Sunday, April 26, 2020
Music and Evolution Essay Example
Music and Evolution Essay Music and evolution An evaluation of the selective pressures on the origins of music and language L. T. T. Hagemans Blok 3. 6 Bachelor thesis Begeleider: Dr. Harry Smit Universiteit Maastricht Faculteit der Psychologie Biologische afstudeerrichting ABSTRACT It is possible to survive without music. Therefore the origins of mu sic were not immediately considered to be an evolutionary adaptation relieving a specific selective pressure. However, cumulating evidence point to the biological significance of music. Musicality originates early in development, it can serve as a mood regulator, facilitates group cohesion and cooperation, and it affects pair bonding during sexual selection. Until recently these theories did not provide a complete and precise story of the how and when questions about the evolution of music. This study attends the question of possible selective pressures on the evolution of music. The latest theory called Hmmmmm communication incorporates the former theories and is supported by archaeological evidence dating the origins of music much further back in time. Hmmmmm communication implies a shared evolutionary ancestor of music and language, which signifies that one is not derivative of the other. During the evolutionary trajectory several important adaptations like bipedalism and reduced sexual dimorphism resulted in the gradational evolution of Hmmmmm communication that eventually split into the precursors of the language and music we are familiar with today. 2 CONTENTS INTRODUCTION 1 THE SCIENCE OF EVOLUTIONARY MUSICOLOGY . 6 1. 1 Types of evidence 7 1. 2 Pitfalls of an evolutionary theory of music .. 8 2 MUSIC AND LANGUAGE . 10 2. 1 Similarities concerning the human species and human society. 10 2. Similarities concerning the structure of language and music . 11 2. 3 Differences .. 12 2. 4 Independence between music and language .. 13 2. 5 Modularity of music and language 14 3 MUSIC AND EMOTION .. 16 3. Mother-infant communication of emotion . 16 3. 2 Musical communication of emotion . 17 3. 3 The emotional effects of music .. 17 4 SEXUAL SELECTION .. 19 4. 1 Mechanisms of sexual selection . 19 4. Millerââ¬â¢s wrong interpretation: problems with sexual selection of music .. 19 5 GROUP SELECTION . 21 5. 1 Group cohesion .. 21 5. 2 Mood synchronisation and cooperation .. 21 5. 3 Social bonding 2 6 HMMMMM THEORY 23 6. 1 Indirect selection pressures .. 23 6. 2 Bipedalism 23 6. 3 Singing Neanderthal hypothesis . 24 DISCUSSION . 6 REFERENCES 28 3 INTRODUCTION In reply to the question ââ¬Å"what is music? â⬠people are often inclined to answer that ââ¬Å"music is the language of emotionâ⬠. Although this phrase has become a catchy cliche, we still know little about why it has a ny meaning to us humans. Intuitively it looks rather comprehensible but when we try to explain music we come into trouble. Why do we see music as a language and how can this non-sentient entity communicate the most profound emotions to us? We will write a custom essay sample on Music and Evolution specifically for you for only $16.38 $13.9/page Order now We will write a custom essay sample on Music and Evolution specifically for you FOR ONLY $16.38 $13.9/page Hire Writer We will write a custom essay sample on Music and Evolution specifically for you FOR ONLY $16.38 $13.9/page Hire Writer It is hard to define music considering the many diverging descriptions for it. Greek philosophers and medieval theorists defined music as tones ordered horizontally as melodies, and vertically as harmonies. But disagreement of music as being only pleasant melodies led future composers to explore darker, harsher, and afterwards atonal melodies. Later on contemporary composers even used noise as a way to make music, and according to them any sound could be seen as music. Musicologist Jean-Jacques Nattiez (1990) states that even within a single society there is no consensus about the border between music and noise. Therefore, ââ¬Ëthere is no single and intercultural universal concept defining what music might beââ¬â¢. According to another (ethno)musicologist, Bruno Nettl (1983), music is ââ¬Ëhuman sound communication outside t he scope of languageââ¬â¢. This description covers a lot but then again it fails to define the artistic statement made by composer John Cage in 1952. His composition 4,33 consist of nothing but four and a half minutes of silence signifying that apart from soun d, silence is a key aspect of music. It is even harder to identify the origins of music. Considering the amount of effort and enjoyment we take in producing and listening to music one has to wonder how on earth all this brouhaha about the arrangement of so unds came to be. The old age and ubiquity of music demonstrate the inbred appreciation people have for music. But where does our predisposition to engage in music come from? When thinking about the origins of music it is tempting to assume an evolutionary explanation for it. After all, everything in nature that exists today must have had some adaptive value in the past otherwise it would not exist at all. The existence of music is all the more mysterious then, because it does not seem to serve any purpose in our survival or reproduction. This is presumably the reason for the considerable controversy surrounding the questions of the origin, biological significance, and function of music. Steven Pinker (1997) argues that music is nothing more than ââ¬Ëauditory cheesecakeââ¬â¢, an evolutionary spin-off from language. In addition to Pinker, David Huron (2001) questioned the evolutionary origins of 4 music and underlined the post hoc argumentation of evolutionary theorizing. He also points out the complex genesis of music evolution and agrees with a premusical adaptation but also suggests a co-evolution with culture. Although not very convinced of an evolutionary theory for music, Huron argues that music can facilitate social bonding. In contrast, Charles Darwin (1871) ar gued for music as a biological adaptation in sexual selection. Geoffrey Miller (2000) amplified Darwinââ¬â¢s sexual selection theory emphasizing the fact that music production is highest during adolescence at the time when males are most active in human courtship. The most promising hypothesis is the ââ¬ËHmmmmmââ¬â¢ theory from cognitive archaeologist Steven Mithen (2005). Hmmmmm stands for Holistic, multi-modal, manipulative, music mimetic and is thought to be the common evolutionary ancestor of language and music. Although several researchers (e. g. Brown, 2000; Wray, 2002) have set an example for the idea of a precursory proto or musilanguage, Mithenââ¬â¢s hypothesis provides a more complete picture combining data from multiple disciplines with archaeological evidence. In order to understand more about the origins of music it is vital to spend a great deal of notice to the evolution of language, but it could also work the other way around. Either way the parallel study of language and music can make a large contributio n to the advance in science in contrast to dealing with them separately. Also, more and more studies are beginning to show the practical benefits of music therapy for mental and physical health. Furthermore, music has positive effects on mood, learning and creativity. Therefore, knowledge of the origins of music can be of great use to science and society. It is a great mystery that although we could easily survive without music it has such a big impact on our emotions. It has the power to make someone cry or cause shivers down the spine, the ability to cheer up crowds at a concert or soothe a baby in distress. It appears that the faculty of music is one that we industriously endeavour. The question is: what made us this way? Perhaps the evolution of language, emotion or sexual evolution can help to explain the origins of music. However, the theories of music evolution are diverse and on their own they do not provide a clear picture. The aim of this research is to evaluate the natural and sexual selection theories of music to see if an evolutionary argument can be made for the origins of music and its counterpart language. Therefore the question will be: What are the possible selection pressures for the evolution of music in relation to language? 5 1 THE SCIENCE OF EVOLUTIONARY MUSICOLOGY In providing a basic framework for the study of the biology of music, Wallin (1991) distinguished three branches in this field (fig. 1). The first of which, evolutionary musicology, deals with the origins of music and employs the data of the other two branches as well. In search of musical origins evolutionary musicologists look for clues provided by evolutionary psychology, archaeology, and animal studies like bird song but especially utterances of primates from chimpanzees, gorillas, bonobos, geladas, gibbons, and vervet monkeys. Apart from that evolutionary musicology makes use of data from neurological studies that consist mainly of fMRI studies for specific brain areas (whether or not shared with language); lesion or pathological studies like aphasia and amusia; and developmental studies with evidence of early innate musical abilities. Comparative studies can be carried out by making comparisons, of which there are two types. Comparative musicology (also referred to as ethnomusicology) is affected with comparisons between humans from different cultures or ethnical backgrounds. Comparative (or animal) psychology is concerned with comparisons between humans and animals, i. e. nonhuman animals (e. g. song -birds) and humanlike animals (e. g. primates). Fig. 1 Classification of the disciplines within biomusicology by Wallin (1991). This study is focussed on evolutionary musico logy. 6 1. 1 Types of evidence A clear view of the science of evolutionary musicology is made easier by tak ing a brief look at the types of evidence that are used to discover the origins of music. Genetic evidence. This would be the best type of evidence for an evolutionary account of music, but until now there has not been any solid evidence of a gene for e. g . musical talent or absolute pitch. Both Miller (2000) and Huron (2001) emphasize on the need for genetic evidence for the conclusiveness of the evolutionary origins of music. In the case of language however, the FOXP2 gene suggests some heredity of language (Enard t al. 2002). FOXP2 is a gene that is implicated in the development of language skills, including grammatical competence. It is possible that this gene could be relevant to music as well. Neurological evidence. The presence of specialized brain structures is consistent with innate developmental dispositions producing music abilities in contrast to solely due to learning or conditioning. However, specialized structures are neither a prerequisite nor a sufficiency for music to be an evolutionary adaptation. On the other hand, shared brain structures e. . with language would suggest a shared evolution in the past. Psychological evidence. These can range from developmental data of the early musical abilities of babies to cognitive data about the rules and mechanisms of the systems we call music and language. For a faculty, like music, to classify as a complex human adaptation there are several classic criteria (Miller, 2000). The fact that music satisfies the criterion of an orderly development schedule makes a strong evolutionary argument for its adaptive value. Ethological evidence. Ethology is the scientific study of animal behavior considered as a branche of zoology. It studies the instinctive natural traits as opposed to those found in laboratory environments. In the case of music, it is concerned with the consistency of musical behaviors with survival and propagation of genes. For example studies about the variety of alarm or mating calls from chaimpanzees to gibbons. Comparative evidence. Comparative psychology also studies animal behavior, but, as opposed to ethology, construes its study as a branch of psychology rather than as one of biology. Thus, where ethology sees the study of animal behavior in the context of what is known about animal anatomy and physiology, comparative psychology sees the study of animal behavior in the context of what is known about human psychology. Anthropological evidence. This is the evidence that coincides with comparative musicology. For example, different cultures are compared and when a universal feature is found it can be attributed to evolution. Selection pressures have caused a common design 7 feature among cultural diversity. For instance there is not a single culture or cummunity to be found on earth that does not engage in music. Thus, ubiquity is a sound evolutionary argument for music to have (had) adaptive value. Also, paleoanthropology can provide clues about the ideal circumstances in which music could have arisen. For example bipedalism has had a great influence on music development among others (Mithen, 2005). Archeological evidence. The earliest evidence of music is believed to be a bone flute although there is some debate about its authenticy of approximately 50,000 years old found in Divje Babe, Slovenia (Ivan Turk, 1995 in Mithen, 2005). Of course early hominids could have used sticks and stones prior to self-made instrument or simply singing for that matter but these clues are irretracable. Huron (2001) estimates the antiquity of music to be 250,000 years old. However, Mithen (2005) argues that before homonids could actually have begun to sing they had to have the ability to sing. Therfore selection pressures on music are dated back much further to 5 milion years ago were singing was becoming possible through means of other adaptations not directly related to music. Either way, the antiquity of music is another evolutionary argument for its adaptation. . 2 Pitfalls of an evolutionary theory of music When theorizing about the evolution of music one h as to be very cautious. The problem with evolutionary theories is the hindsight bias. It seduces us to post hoc reasoning; that particular adaptations were designed for a particular purpose, while in fact one should rather focus on why all the other designs have ceased t o exist. In other words, why has the surviving adaptation escaped the clean-up. There are some problems to tackle, which will become clear by attending to some basic questions. Is music an evolutionary adaptation? While most evidence is based on the assumption that there had to have been an evolution of music, this does not have to be necessarily so. There are several psychologists who do not think the evidence in support of music as an evolutionary adaptation is strong (e. g. Pinker, 1997; Huron, 2001). However, there is also no evidence that would pose a serious threat for an evolutionary theory of music. Moreover, according to Miller (2000) music satisfies many of the classis criteria for a complex adaptation. How could music have evolved? Present-day there are numerous possible candidates for the selection pressures of music evolution. These fall into all four categories: natural selection, sexual selection, group selection, and cultural selection. Moreover, Huron (2001) 8 argues that if music is indeed an evolutionary adaptation, then it will probably have a complex genesis. It could be built upon several other adaptations e. g. for language. It might represent several adaptations that are all placed under the same denominator i. e. music. It co uld be involving a complex co -evolution with culture. Or, it could be that music used to have survival value in the past but is now merely vestigial (e. g. like the human appendix, or tonsils). Thus, there are a lot of hypothesis to choose from. Do language and music have a common precursor? In extension to the previous question, there are distinct patterns of evolution (Hauser McDermott, 2003). Homoplasies are traits that started as two distinct lineages but ended in an evolutionary convergence (convergent evolution). Homologies are traits that are descendant from a common ancestor. Music is believed to be a homology to language. However, there are four possible theories for the evolution of music and speech: 1) music evolved from speech, 2) speech evolved from music, 3) both evolved from a common ancestor, or 4) music and language evolved in parallel to each other (Brown, 2000; Mithen, 2005). Are there language and music universals? Since Chomsky (1957), language is said to have a universal basis that can be found in all languages over the world. Chomsky points out to the fact that children learn language very fast and without much effort, which led him to think there is an innate language system. This system accounts for the fact that grammar is learned automatically and after learning the rules of language one can make infinite combinations of words with finite means. Because of its presumably shared history with language, music is also suggested to have such a universal. However, the notion of a musical grammar is contentious and only one theory (Lerdahl Jackendoff, 1983) has been put forward until now. Moreover, some studies show that grammar is not reserved to humans only. Starlings are able to recognize recursive grammar (Gentner et al. 2006), which is difficult to reconcile with the notion that recursion (the grammatical process of embedding) is attributed strictly to humans (Hauser et al. 2002). Also, several researchers suggest that language depends much on the use of holistic, that is prefabricate d, expressions (e. g. pig in a poke) instead of grammar (e. g. Wray, 2002). Is music a result of culture? While focusing on biological issues, it is wrong to assume that t he effects of culture on music were minimal. It seems implausible that the complexity o f music is due solely to the force of nature. Therefore, music evolution is bound to have had some cultural influence. 9 2 MUSIC AND LANGUAGE In trying to find out the origins of music and a possible evolutionary history with language it helps to look at t he similarities and differences between music and language. Similarities could serve as evidence for a dependence of music and language to the same underlying mechanisms, while the differences point to a divergence between the two. Of course one has to not e that similarities are no conclusive evidence of a common ancestor while these similarities could be the resulting homoplasies of a convergent evolution. In order for music to be a ââ¬Ëlanguage of emotionââ¬â¢ it would be forced to evolve into a system with language-like characteristics, implying a common origin. On the other hand, this line of thought is not very convincing because music and language have just too many important similarities for these to be chance occurrences alone, as pointed out by Brown (2000 ). At the same time Mithen (2005) argues that music is or eventually became too different from music to be a spin-off from language (Pinker, 1997). 2. Similarities concerning the human species and human society Universality. Music and language are universal among humans; they are present in all human societies. This can be observed not only on the level of societies or cultures but also on the individual level. Humans have a general capacity to acquire linguistic and musical competence. It is important to notice the unbalance between music and language production. Because language is far more practical for communicati on it is used more often than music and therefore it is practiced on a daily basis. This has the effect that the production of music is limited to a relatively small group of people leading to a non-universal appearance. Nevertheless, there are no unmusical people only untrained ones; after all, ââ¬Ëunmusicalââ¬â¢ people are perfectly capable of listening to and distinguishing patterns of sound. If music was taught as intensely as language in the early days at school, we could make music as easily as talking or writing. In other non-western cultures where more people engage in everyday music making, this unbalance exists indeed to a much lesser extent (Blacking, 1973). Human specificity. Both music and language are specific to the human species only. It is possible to consider bird song or gibbon duets ââ¬Ëmusicââ¬â¢, but that would be a human interpretation. Music produced by animals has a simplistic and arbitrary nature and animals are not able to play with words or notes as humans are. 10 Cultural diversity. Among cultures there is a wide variety of music forms and present day more than six thousand languages are spoken in the world (Mithen, 2005). Like languages, cultural differences in music are determined by stylistic, geographical and social boundaries. The cultural diversity is a result of cultural transmission via generations and between societies, which makes identifying the boundaries difficult. For instance, when did Latin became Italian or Classical music became Romantic? It is also suggested that the cultural diversity is constrained by universal features underlying language and music (e. g. Blacking, 1973). 2. 2 Similarities concerning the structure of language and music Modes of expression. Music and language are the two primary acoustic communicative systems of our species. They both share three different modes of expression: vocally, physically, and in writing. Vocalizations are recognized in speech and song, body movement is used with sign language (or gestures) and dance, and both systems can be written down. Hierarchical structure. Because of its clear-cut description the following text is a citation of Slobodaââ¬â¢s notion of hierarchical structure: ââ¬Å"It is common to consider a human language as comprising three components: phonology ââ¬â a way of characterising the basic sound units of a language; syntax ââ¬â the rules governing the way in which sound units are combined; and semantics ââ¬â the way in which meaning is assigned to sound sequences. Music seems to break down quite naturally into the same three componentsâ⬠(Sloboda, 1985). Within the phonological level the acoustical elements of both music and language can be divided into two sublevels (Sherer Zentner, 2001). 1) Segmental features are the acoustic characteristics of the building blocks (segments) of a structure. In music, those building blocks are the individual sounds produced by the singing voice or an instrument, corresponding to phones of the phonemes (a set of phones) in speech. Segmental features are the features that describe the acoustic structure of the individual tone segments (building blocks). The segmental features are basically the same for music and language, namely: duration, energy, pitch, and ââ¬â in the case of music timbre. 2) Suprasegmental features are defined by Sherer and Zentner as ââ¬Ëthe systematic configurational changes in sound sequences over timeââ¬â¢, and lie on top of the segmental features. In speech these are for exa mple prosody, intonation and stress, while in music comparable features are melody, tempo and rhythm. Molino (2000) and Mithen (2005) underline the melodic and rhythmic component in speech, which is necessary to perform proper prosody and conversation. 1 Combinatorial systems. As mentioned above, language and music have a structure of hierarchical nature that consists of the small acoustic elements (words or tones) that can be combined into larger phrases (utterances or melodies) and those can be combined aga in to make linguistic or musical discourse (Mithen, 2005). These combinations can lead to recursion: a linguistic or mu sical phrase is embedded within another phrase of a similar type. With recursion an infinite range of expressions can be generated from a set of finite elements. While animals are constraint to a finite and small set of utterances in the communicative repertoire, humans can generate infinite numbers of novel sequences that they have never heard before (Hauser et al. , 2002). Thus music and language are both generative combinatorial systems. 2. 3 Differences Symbols. The nature of the discrete units (words or tones) in the hierarchical structures is completely different. Language uses symbols that have a referential meaning based on an arbitrary association between the symbols and the referent (e. g. dogââ¬â¢ refers to a hairy animal that barks but the word does not look or sound like a dog). In music the notes do not refer to anything not even emotions, so there are no symbols in music only emotional expressions. It is the holistic phrase in a piece of music that obtains an emotional load. The only meaning that music can have is that carnival music ââ¬Ëmeansââ¬â¢ more to people below the rivers in Holland than for people above. This is similar to the not ion of Wagnerââ¬â¢s use of ââ¬Ëleitmotifsââ¬â¢ in his operas; although it represents something outside the scope of music, the message of the music itself remains without any literal meaning. However, the formulaic aspects of language (like in a saying for instance) have a greater similarity with music than we tend to think. Just like in music it makes no sense to separate the individual pieces of an expression because then the meaning of the expression is lost e. g. trying to translate the Dutch saying ââ¬Å"met je neus in de boter vallenâ⬠word by word, does not contribute anything to its understanding. In a similar way separating the opening notes of Beethovenââ¬â¢s Fifth (e. g. by ten seconds) eliminates its meaning completely. Grammar. Because of the rules of grammar, ââ¬Ëlion k ills manââ¬â¢ means something different than ââ¬Ëman kills lionââ¬â¢. Chomsky stated with his ââ¬Ëpoverty of the stimulusââ¬â¢ argument that the acquisition of grammatical rules by children is too incredible considering that the grammar rules have to be abstracted from the utterances they hear. He therefore proposed that there is an innate set of predispositions, a ââ¬ËUniversal Grammarââ¬â¢, in the human species, which 12 helps in acquiring grammar. Researchers like Lerdahl and Jackendoff (1983) went in search for a musical equivalent of the universal grammar but it soon turned out that the rules of musical style are fundamentally different from the rules of language. Unlike in ââ¬Ëlion kills manââ¬â¢ changing the order of the notes in a piece of music does not change its meaning, because there is no meaning to be changed in the first place. Another difference between the rules of music and language is the change through time. Because language has to remain understandable to have a function it has to remain stable and therefore cannot change much (Mithen, 2005). Music on the other hand is changed a lot because deviation and renewal is appreciated in music. We can observe that language indeed changes at a much slower pace than musical styles evolve. For example the word ââ¬Ëgayââ¬â¢ meant something different before the 1970ââ¬â¢s but the number one on the top 40 hit -list changes every few weeks and a completely new music style can develop within years if not months. Information transmission. Music is a non-referential system of communication and lacks any clear communicative function. There is no information transmitted like in the case of language, but it can move us on a very deep level. Therefore music is said to be purely manipulative and language is said to be referential. However, language can be manipulative as well, for instance when somebody tells us something to do we are driven to action (Mithen, 2005). 2. 4 Independence between music and language To discover if the similarities and differences between music and language can be reduced to structures in the brain one is assigned to the domain of neuropsychology. From this discipline the lesion studies and studies of pathologies like amusia and aphasia provide a great deal of evidence. Amusia is a deficit in processing or producing music, while apha sia is the deficit in understanding or producing language (Mithen, 2005). Amusia can be congenital from birth -, or acquired after brain damage. There are also several types of aphasia. Brocaââ¬â¢s aphasia is an intact understanding of language but the ina bility to speak. Wernickeââ¬â¢s aphasia is the reversal of this; while patients are able to speak but their utterances are meaningless and they cannot understand words that are spoken to them. Also differences in degradation can be distinguished; global aphasia comprises the whole loss of language abilities; anomic aphasia on the other hand is restricted to not being able to find the appropriate words when speaking. A t ypical case of aphasia is that of the Russian composer Shebalin who suffered a severe stroke in the temporal and parietal regions of his left hemisphere. He was not able to 13 understand people or make comprehensible utterances but his musical abilities remained untouched. During his disorder he even finished his Fifth symphony, which was considered a brilliant and artistic piece of music by his contemporaries. Other cases show similar symptoms but there is a lot of variation (Mithen, 2005). Some patients differ in the capacity to recognize environmental sounds, foreign languages and linguistic prosod y. Again others have different recovery rates for musical, verbal and environmental sound recognition. The existence of a dissociation between recognizing words, music, or environmental sounds suggests that there is not one but rather two distinct modules for processing auditory information: one for speech and one for sound (Peretz Coltheart, 2003). In the cases of amusia patients
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.